EXPONENT RULES \& PRACTICE

1. PRODUCT RULE: To multiply when two bases are the same, write the base and ADD the exponents.

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

Examples:
A. $x^{3} \cdot x^{8}=x^{11}$
B. $2^{4} \cdot 2^{2}=2^{6}$
C. $\left(x^{2} y\right)\left(x^{3} y^{4}\right)=x^{5} y^{5}$
2. QUOTIENT RULE: To divide when two bases are the same, write the base and SUBTRACT the exponents.

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

Examples:
A. $\frac{x^{5}}{x^{2}}=x^{3}$
B. $\frac{3^{5}}{3^{3}}=3^{2}$
C. $\frac{x^{2} y^{5}}{x y^{3}}=x y^{2}$
3. ZERO EXPONENT RULE: Any base (except 0) raised to the zero power is equal to one.

$$
x^{0}=1
$$

Examples:
A. $y^{0}=1$
B. $6^{0}=1$
c. $\quad\left(7 a^{3} b^{-1}\right)^{0}=1$
4. POWER RULE: To raise a power to another power, write the base and MULTIPLY the exponents.

$$
\left(x^{m}\right)^{n}=x^{m \cdot n}
$$

Examples:
A. $\left(x^{3}\right)^{2}=x^{6}$
B. $\left(3^{2}\right)^{4}=3^{8}$
C. $\left(z^{5}\right)^{2}=z^{10}$
5. EXPANDED POWER RULE:

$$
(x y)^{m}=x^{m} y^{n} \quad\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}
$$

Examples:
A. $(2 a)^{3}=2^{3} a^{3}=8 a^{3}$
B. $\left(6 x^{3}\right)^{2}=6^{2}\left(x^{3}\right)^{2}=36 x^{6}$
C. $\left(\frac{x^{2}}{y}\right)^{4}=\frac{\left(x^{2}\right)^{4}}{y^{4}}=\frac{x^{8}}{y^{4}}$
D. $\left(\frac{2 x}{3 y^{2}}\right)^{3}=\frac{(2 x)^{3}}{\left(3 y^{2}\right)^{3}}=\frac{2^{3} x^{3}}{3^{3}\left(y^{2}\right)^{3}}=\frac{8 x^{3}}{27 y^{6}}$
6. NEGATIVE EXPONENTS: If a factor in the numerator or denominator is moved across the fraction bar, the sign of the exponent is changed.

$$
x^{-m}=\frac{1}{x^{m}} \quad \frac{1}{x^{-m}}=x^{m} \quad\left(\frac{x}{y}\right)^{-n}=\left(\frac{y}{x}\right)^{n}
$$

Examples:
A. $x^{-3}=\frac{1}{x^{3}}$
B. $4^{-2}=\frac{1}{4^{2}}=\frac{1}{16}$
C. $-4 x^{5} y^{-2}=\frac{-4 x^{5}}{y^{2}}$
D. $\left(\frac{x^{2}}{y}\right)^{-3}=\left(\frac{y}{x^{2}}\right)^{3}=\frac{y^{3}}{x^{6}}$
E. $\left(3 x^{-2} y\right)\left(-2 x y^{-3}\right)=-6 x^{-1} y^{-2}=\frac{-6}{x y^{2}}$
F. $\frac{a^{-2} b^{3}}{c^{-4} d^{-1}}=\frac{b^{3} c^{4} d}{a^{2}}$
G. $\left(-2 x^{2} y^{-4}\right)^{-2}=\left(\frac{-2 x^{2}}{y^{4}}\right)^{-2}=\left(\frac{y^{4}}{-2 x^{2}}\right)^{2}=\frac{y^{8}}{4 x^{4}}$

CAUTION: $-x \neq \frac{1}{x} \quad$ For example: $-3 \neq \frac{1}{3}$
REMEMBER: An exponent applies to only the factor it is directly next to unless parentheses enclose other factors. Examples:
A. $(-3)^{2}=(-3)(-3)=9$
B. $-3^{2}=-9$

